On the Homogenization of Oscillatory Solutions to Nonlinear Convection-diffusion Equations1
نویسندگان
چکیده
We study the behavior of oscillatory solutions to convection-diffusion problems, subject to initial and forcing data with modulated oscillations. We quantify the weak convergence in W−1,∞ to the ’expected’ averages and obtain a sharp W−1,∞-convergence rate of order O(ε) – the small scale of the modulated oscillations. Moreover, in case the solution operator of the equation is compact, this weak convergence is translated into a strong one. Examples include nonlinear conservation laws, equations with nonlinear degenerate diffusion, etc. In this context, we show how the regularizing effect built-in such compact cases smoothes out initial oscillations and, in particular, outpaces the persisting generation of oscillations due to the source term. This yields a precise description of the weakly convergent initial layer which filters out the initial oscillations and enables the strong convergence in later times. In memory of Haim Nessyahu, a dearest friend and research colleague.
منابع مشابه
On the Homogenization of Oscillatory Solutions to Nonlinear Convection-diffusion Equations Eitan Tadmor and Tamir Tassa
We study the behavior of oscillatory solutions to convection-diiusion problems, subject to initial and forcing data with modulated oscillations. We quantify the weak convergence in W ?1;1 to the 'expected' averages and obtain a sharp W ?1;1-convergence rate of order O(") { the small scale of the modulated oscillations. Moreover, in case the solution operator of the equation is compact, this wea...
متن کاملUnsteady free convection oscillatory couette flow through a variable porous medium with concentration profile
In this paper we have studied the effect of free convection on the heat transfer and flow through variable porous medium which is bounded by two vertical parallel porous plates. In this study it is assume that free stream velocity oscillates with time about a constant mean. Periodic temperature is considered in the moving plate. Effect of different parameters on mean flow velocity, Transient ve...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملFree convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion
This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...
متن کاملPrincipal Pairs for Oscillatory Second Order Linear Differential Equations1
Nonoscillatory second order differential equations always admit “special”, principal solutions. For a certain type of oscillatory equation principal pairs of solutions were introduced by Á. Elbert, F. Neuman and J. Vosmanský, Diff. Int. Equations 5 (1992), 945–960. In this paper, the notion of principal pair is extended to a wider class of oscillatory equations. Also an interesting property of ...
متن کامل